无标题文档
学术活动

1112上海管理论坛第560期(凌晨教授,杭州电子科技大学)

创建时间:  2025-11-11  沈洁   浏览次数:

题目:基于新型张量分解的互联网流量数据恢复和预测方法

演讲人:凌晨教授,杭州电子科技大学

主持人:林贵华教授,上海大学管理学院

时间:2025年11月12日(周三),上午10:30

地点:上海大学校本部东区1号楼管理学院420会议室

主办单位:上海大学管理学院、上海大学管理学院青年教师联谊会

演讲人简介:

凌晨,知名优化专家,杭州电子科技大学二级教授。曾任中国运筹学会数学规划分会副理事长、中国经济数学与管理数学研究会副理事长、中国运筹学会理事、中国系统工程学会理事、浙江省数学会常务理事等。现任Pacific Journal of Optimization、Statistics、Optimization & Information Computing等期刊编委。主持国家级和省部级项目多项。在Math Program、SIAM J Optim、SIAM J Matrix Anal Appl等顶级期刊发表论文多篇。

演讲内容简介:

Recovery and forecast of network traffic data from incomplete observed data is an important issue in internet engineering and management. In this paper, by fully considering the temporal stability and periodicity features in internet traffic data, a novel optimization model for internet data recovery and forecast is proposed, which is based upon the newly introduced higher order tensor decomposition form called tubal tensor train decomposition. Moreover, by introducing auxiliary variables and penalty techniques, a relaxation of the proposed model is obtained. Then, an easy-to-operate and effective algorithm for solving the relaxation model is proposed. We prove that the sequence generated by the proposed algorithm converges to a stationary point of the established relaxation model. A series of numerical experiments about the recovery of structurally missing traffic data and the traffic data prediction on the widely used real-world datasets demonstrate that our approach have favorable performance than some state-of-the-art tensor/matrix based approaches.

欢迎广大师生参加!





下一条:1112上海管理论坛第559期(赵云彬教授,广东省智能工业孪生与优化工程技术研究中心)

 
 

      版权所有 © 上海大学   沪ICP备09014157   沪公网安备31009102000049号  地址:上海市宝山区上大路99号    邮编:200444   电话查询
 技术支持:上海大学信息化工作办公室   联系我们