题目:Bayesian Penalized Empirical Likelihood and MCMC Sampling(贝叶斯惩罚经验似然与MCMC抽样)
演讲人:常晋源,西南财经大学光华特聘教授
主持人:翟庆庆,上海大学管理学院副教授
时间:2024年11月15日(周五),上午9:30
地点:上海大学校本部东区1号楼管理学院477会议室
主办单位:上海大学管理学院、上海大学管理学院青年教师联谊会
演讲人简介:
常晋源,西南财经大学光华特聘教授、中国科学院数学与系统科学研究院研究员、博士生导师,主要从事超高维数据分析和高频金融数据分析相关的研究工作。现担任统计学国际顶级学术期刊Journal of the American Statistical Association的副主编、计量经济学国际顶级学术期刊Journal of Business & Economic Statistics的副主编。
演讲内容简介:
In this study, we introduce a novel methodological framework called Bayesian Penalized Empirical Likelihood (BPEL), designed to address the computational challenges inherent in empirical likelihood (EL) approaches. Our approach has two primary objectives: (i) to enhance the inherent flexibility of EL in accommodating diverse model conditions, and (ii) to facilitate the use of well-established Markov Chain Monte Carlo (MCMC) sampling schemes as a convenient alternative to the complex optimization typically required for statistical inference using EL. To achieve the first objective, we propose a penalized approach that regularizes the Lagrange multipliers, significantly reducing the dimensionality of the problem while accommodating a comprehensive set of model conditions. For the second objective, our study designs and thoroughly investigates two popular sampling schemes within the BPEL context. We demonstrate that the BPEL framework is highly flexible and efficient, enhancing the adaptability and practicality of EL methods. Our study highlights the practical advantages of using sampling techniques over traditional optimization methods for EL problems, showing rapid convergence to the global optima of posterior distributions and ensuring the effective resolution of complex statistical inference challenges.
欢迎广大师生参加!